Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 993
Filter
1.
Tien Tzu Hsueh Pao/Acta Electronica Sinica ; 51(1):202-212, 2023.
Article in Chinese | Scopus | ID: covidwho-20245323

ABSTRACT

The COVID-19 (corona virus disease 2019) has caused serious impacts worldwide. Many scholars have done a lot of research on the prevention and control of the epidemic. The diagnosis of COVID-19 by cough is non-contact, low-cost, and easy-access, however, such research is still relatively scarce in China. Mel frequency cepstral coefficients (MFCC) feature can only represent the static sound feature, while the first-order differential MFCC feature can also reflect the dynamic feature of sound. In order to better prevent and treat COVID-19, the paper proposes a dynamic-static dual input deep neural network algorithm for diagnosing COVID-19 by cough. Based on Coswara dataset, cough audio is clipped, MFCC and first-order differential MFCC features are extracted, and a dynamic and static feature dual-input neural network model is trained. The model adopts a statistic pooling layer so that different length of MFCC features can be input. The experiment results show the proposed algorithm can significantly improve the recognition accuracy, recall rate, specificity, and F1-score compared with the existing models. © 2023 Chinese Institute of Electronics. All rights reserved.

2.
Decision Making: Applications in Management and Engineering ; 6(1):502-534, 2023.
Article in English | Scopus | ID: covidwho-20244096

ABSTRACT

The COVID-19 pandemic has caused the death of many people around the world and has also caused economic problems for all countries in the world. In the literature, there are many studies to analyze and predict the spread of COVID-19 in cities and countries. However, there is no study to predict and analyze the cross-country spread in the world. In this study, a deep learning based hybrid model was developed to predict and analysis of COVID-19 cross-country spread and a case study was carried out for Emerging Seven (E7) and Group of Seven (G7) countries. It is aimed to reduce the workload of healthcare professionals and to make health plans by predicting the daily number of COVID-19 cases and deaths. Developed model was tested extensively using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R Squared (R2). The experimental results showed that the developed model was more successful to predict and analysis of COVID-19 cross-country spread in E7 and G7 countries than Linear Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). The developed model has R2 value close to 0.9 in predicting the number of daily cases and deaths in the majority of E7 and G7 countries. © 2023 by the authors.

3.
Proceedings - IEEE International Conference on Device Intelligence, Computing and Communication Technologies, DICCT 2023 ; : 401-405, 2023.
Article in English | Scopus | ID: covidwho-20244068

ABSTRACT

COVID-19 virus spread very rapidly if we come in contact to the other person who is infected, this was treated as acute pandemic. As per the data available at WHO more than 663 million infected cases reported and 6.7 million deaths are confirmed worldwide till Dec, 2022. On the basis of this big reported number, we can say that ignorance can cause harm to the people worldwide. Most of the people are vaccinated now but as per standard guideline of WHO social distancing is best practiced to avoid spreading of COVID-19 variants. This is difficult to monitor manually by analyzing the persons live cameras feed. Therefore, there is a need to develop an automated Artificial Intelligence based System that detects and track humans for monitoring. To accomplish this task, many deep learning models have been proposed to calculate distance among each pair of human objects detected in each frame. This paper presents an efficient deep learning monitoring system by considering distance as well as velocity of the object detected to avoid each frame processing to improve the computation complexity in term of frames/second. The detected human object closer to some allowed limit (1m) marked by red color and all other object marked with green color. The comparison of with and without direction consideration is presented and average efficiency found 20.08 FPS (frame/Second) and 22.98 FPS respectively, which is 14.44% faster as well as preserve the accuracy of detection. © 2023 IEEE.

4.
2023 11th International Conference on Information and Education Technology, ICIET 2023 ; : 480-484, 2023.
Article in English | Scopus | ID: covidwho-20243969

ABSTRACT

In recent years, the COVID-19 has made it difficult for people to interact with each other face-to-face, but various kinds of social interactions are still needed. Therefore, we have developed an online interactive system based on the image processing method, that allows people in different places to merge the human region of two images onto the same image in real-time. The system can be used in a variety of situations to extend its interactive applications. The system is mainly based on the task of Human Segmentation in the CNN (convolution Neural Network) method. Then the images from different locations are transmitted to the computing server through the Internet. In our design, the system ensures that the CNN method can run in real-time, allowing both side users can see the integrated image to reach 30 FPS when the network is running smoothly. © 2023 IEEE.

5.
Sustainable Computing: Transforming Industry 40 to Society 50 ; : 49-67, 2023.
Article in English | Scopus | ID: covidwho-20243388

ABSTRACT

Covid-19 is a newly found corona virus that causes an infectious disease. An accurate diagnosis of several waves in Covid-19 is still a tremendous confront due to the difficulties of marking infection areas, and it is an emergency and important for worldwide in 2020 and still now. There is almost no difference between common pneumonia and other viral pneumonia using CT scanned images, so false-negative images may be obtained. An ensemble of deep multi-instance learning (DMIL), train a blotch-level classifier and view the chest CT images as a bag of samples to avoid false negative. Mask R-CNN is used to train an image-level classifier that labels input image as common pneumonia or Covid pneumonia. These Ensemble models of DMIL with Mask R-CNN show an accuracy of 98.96%. These advantages make our model an efficient tool in the screening of Covid-19. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

6.
Integrated Green Energy Solutions ; 1:291-307, 2023.
Article in English | Scopus | ID: covidwho-20242911

ABSTRACT

Currently, the world is witnessing a second wave of the Covid-19 pandemic, and the situation is getting worse day by day. Simple protocols like minimising human contact and wearing a mask outdoors are proving to be good measures to control the spread of the virus. We saw a huge rise in the demand for daily items and due to a lack of availability, large numbers of people gather without taking any precautions to stock essentials. This has led to the spread of the virus to a great extent. In self-checkout stores, the shopping experience is completely automated and there is no physical presence of the shop owner. The automation enables the customers to pick their goods, scan and make payments by themselves without the intervention of the owner or a cashier. In such stores there is a high chance of people not following Covid protocols. So, there is a need for a system that maintains an allowed threshold of people inside the store at any one time, thus minimizing the potential dangerous human contact at all possible cases. We propose an IoT-Based Self-Checkout Store Using Mask Detection. The primary goal of this project is to create a safe environment for the consumers who visit the shop, by keeping a check on the number of customers present at the store and ensuring that each and every customer is following the protocol of wearing a mask. The system consists of two parts, the face mask detection and the customer count. For the mask detection part, deep learning algorithms like CNN are used to generate a model that helps detect a mask, and for the customer count part, a threshold value is set, which gives us the maximum number of people allowed inside the store at a time. The PIR sensors detect the entry and exit of customers and help regulate the count below the threshold. So once the face mask detection of the customer is complete and the number of people present inside the store is checked, the system takes the decision of either allowing the customer inside or asking him or her to wait. This project is designed to provide a solution to the current real-world problem using minimally efficient technology with high accuracy. © 2023 Scrivener Publishing LLC. All rights reserved.

7.
Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, SPIN 2023 ; : 590-596, 2023.
Article in English | Scopus | ID: covidwho-20242821

ABSTRACT

The successful elimination of the SARS-Cov2 virus has evaded the society and medical fraternity to date. Months have passed but the virus is still very much present amongst us though its severity and contagiousness have decreased. The pandemic which was first detected in Wuhan, China in late 2019 has had colossal ramifications for the societal, financial and physical well-being of humankind. Timely detection and isolation of infected persons is the only way to contain this contagion. One of the biggest hurdles in accurately detecting Covid-19 is its similarities to other thoracic ailments such as Lung cancer, bacterial and viral Pneumonia, tuberculosis and others. Differential observation is challenging due to identical radioscopic discoveries such as GGOs, crazy paving structures and their combinations. Thorax imaging such as X-rays(CXR) have proven to be an efficient and economical diagnostics for detecting Covid-19 Pneumonia. The proposed work aims at utilising three CNN models namely Inception-V3, DenseNet169 and VGG16 along with feature concatenation and Ensemble technique to correctly predict Covid-19 Pneumonia from Chest X-rays of patients. The Covid-19 Radiography dataset, having a total of 4839 CXR images, has been employed to evaluate the proposed model and accuracy, precision, recall and F1-Score of 97.74%, 97.78%, 97.73% and 97.75% has been obtained. The proposed system can assist medical professionals in detecting Covid-19 from a host of other pulmonary diseases with a high probability. © 2023 IEEE.

8.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242769

ABSTRACT

Monkeypox is a skin disease that spreadsfrom animals to people and then people to people, the class of the monkeypox is zoonotic and its genus are othopoxvirus. There is no special treatment for monkeypox but the monkeypox and smallpox symptoms are almost similar, so the antiviral drug developed for prevent from smallpox virus may be used for monkeypox Infected person, the Prevention of monkeypox is just like COVID-19 proper hand wash, Smallpox vaccine, keep away from infected person, used PPE kits. In this paper Deep learning is use for detection of monkeypox with the help of CNN model, The Original Images contains a total number of 228 images, 102 belongs to the Monkeypox class and the remaining 126 represents the normal. But in deep learning greater amount of data required, data augmentation is also applied on it after this the total number of images are 3192. A variety of optimizers have been used to find out the best result in this paper, a comparison is usedbased on Loss, Accuracy, AUC, F1 score, Validation loss, Validation accuracy, validation AUC, Validation F1 score of each optimizer. after comparing alloptimizer, the Adam optimizer gives the best result its total testing accuracy is 92.21%, total number of epochs used for testing is 100. With the help of deep learning model Doctors are easily detect the monkeypox virus with the single image of infected person. © 2023 IEEE.

9.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242756

ABSTRACT

COVID-19 is an outbreak of disease which is created by China. COVID-19 is originated by coronavirus (CoV), generally created mutation pattern with 'SARS-CoV2' or '2019 novel coronavirus'. It is declared by the World Health Organization of 2019 in December. COVID-19 is a contagious virus and contiguous disease that will create the morality of life. Even though it is detected in an early stage it can be incurable if the severity is more. The throat and nose samples are collected to identify COVID-19 disease. We collected the X-Ray images to identify the virus. We propose a system to diagnose the images using Convolutional Neural Network (CNN) models. Dataset used consists of both Covid and Normal X-ray images. Among Convolutional Neural Network (CNN) models, the proposed models are ResNet50 and VGG16. RESNET50 consists of 48 convolutional, 1 MaxPool, and Average Pool layers, and VGG16 is another convolutional neural network that consists of 16 deep layers. By using these two models, the detection of COVID-19 is done. This research is designed to help physicians for successful detection of COVID-19 disease at an early stage in the medical field. © 2022 IEEE.

10.
AIP Conference Proceedings ; 2779, 2023.
Article in English | Scopus | ID: covidwho-20241847

ABSTRACT

Today, the whole world is fighting the war against Coronavirus. The spread of the virus has been observed in almost all the parts of the world. Covid-19 also known as SARS-Cov-2 was initially observed in China which rapidly multiplied all over the world. The disease is said to spread by cough, normal cold, sneezing or when a person is in close contact with someone who is already infected. Therefore, the spread of the virus can occur when there is direct contact with an infected person or with the objects touched by the infected person. Hence, it is important to detect the contiguous spread of the virus and control it by taking appropriate measures. Several deep learning models have been used in detecting many diseases like Malaria disease, Lung infection, Parkinson's disease etc. Likewise, CNN model along with other transfer techniques is best proven to detect whether a person is infected with covid positive or not. The dataset consists of 1000 images of covid positive and normal x-rays. The proposed model has been trained and tested on the image dataset with the help of transfer learning models in order to improve the performance of the model. The models VGG-16, ResNet-50, Inception v3 and Xception have achieved an overall accuracy of 93%,82%,96% and 92% respectively. The performance of all the 4 architectures are analyzed, understood and hence presented in this paper. It is hence important to classify and detect covid positive infection and contribute towards making the world Covid-free. © 2023 Author(s).

11.
2023 6th International Conference on Information Systems and Computer Networks, ISCON 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20241476

ABSTRACT

The COVID-19 Pandemic has been around for four years and remains a health concern for everyone. Although things are somewhat returning to normal, increased incidence of COVID-19 cases in some regions of the world (such as China, Japan, France, South Korea, etc.) has bred worry and anxiety in world, including India. The scientific community, which includes governmental organizations and healthcare facilities, was eager to learn how the COVID-19 Pandemic would develop. The current work makes an attempt to address this question by employing cutting-edge machine learning and Deep Learning algorithms to anticipate the daily incidence of COVID-19 for India over the course of the next six months. For the purpose famous timeseries algorithms were implemented including LSTM, Bi-Directional LSTM and Stacked LSTM and Prophet. Owing to success of hybrid algorithms in specific problem domains- the present study also focuses on such algorithms like GRU-LSTM, CNN-LSTM and LSTM with Attention. All these models have been trained on timeseries dataset of COVID-19 for India and performance metrics are recorded. Of all the models, the simplistic algorithms have performed better than complex and hybrid ones. Owing to this best result was obtained with Prophet, Bidirectional LSTM and Vanilla LSTM. The forecast reveals flat nature of COVID-19 case load for India in future six months. . © 2023 IEEE.

12.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20241124

ABSTRACT

Since the start of the covid 19 pandemic, a wide range of medications have been produced and are currently being utilized to treat the disease. Tulsi, in addition to all of the chemical-based medications, is an herbal therapy that is particularly effective in the treatment of this ailment. Tulsi has been used to heal ailments and infections for millennia, particularly in India. Because we use tulsi for medicinal purposes, it's vital to monitor its health in order to reap the full benefits of its herbal properties. Plant diseases harm the health and growth of the plant. Disease detection in plants is crucial so that it can be treated before it spreads throughout the plant. To detect illnesses in tulsi leaves, we propose employing a model based on convolution neural networks. Image processing and CNN are widely employed. The prepared model extracts the image's key features and categorizes it into different disorders. The model has a 75 percent accuracy rate. © 2022 IEEE.

13.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20240716

ABSTRACT

This paper proposes an automated classification method of COVID-19 chest CT volumes using improved 3D MLP-Mixer. Novel coronavirus disease 2019 (COVID-19) spreads over the world, causing a large number of infected patients and deaths. Sudden increase in the number of COVID-19 patients causes a manpower shortage in medical institutions. Computer-aided diagnosis (CAD) system provides quick and quantitative diagnosis results. CAD system for COVID-19 enables efficient diagnosis workflow and contributes to reduce such manpower shortage. In image-based diagnosis of viral pneumonia cases including COVID-19, both local and global image features are important because viral pneumonia cause many ground glass opacities and consolidations in large areas in the lung. This paper proposes an automated classification method of chest CT volumes for COVID-19 diagnosis assistance. MLP-Mixer is a recent method of image classification using Vision Transformer-like architecture. It performs classification using both local and global image features. To classify 3D CT volumes, we developed a hybrid classification model that consists of both a 3D convolutional neural network (CNN) and a 3D version of the MLP-Mixer. Classification accuracy of the proposed method was evaluated using a dataset that contains 1205 CT volumes and obtained 79.5% of classification accuracy. The accuracy was higher than that of conventional 3D CNN models consists of 3D CNN layers and simple MLP layers. © 2023 SPIE.

14.
Cmc-Computers Materials & Continua ; 75(3):5213-5228, 2023.
Article in English | Web of Science | ID: covidwho-20240404

ABSTRACT

This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the fea-tures extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be bet-ter utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.

15.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20240282

ABSTRACT

A horrifying number of people died because of the COVID-19 pandemic. There was an unexpected threat to food systems, public health, and the workplace. The pandemic has severely disturbed society and there was a serious impediment to the economy. The world went through an unprecedented state of chaos during this period. To avoid anything similar, we can only be cautious. The project aims to develop a web application for the preliminary detection of COVID-19 using Artificial Intelligence(AI). This project would enable faster coordination, secured data storage, and normalized statistics. First, the available chest X-ray datasets were collected and classified as Covid, Non-Covid, and Normal. Then they were trained using various state-of-the-art pre-trained Convolutional Neural Network (CNN) models with the help of Tensor-flow. Further, they were ranked based on their accuracy. The best-performing models were ensembled into a single model to improve the performance. The model with the highest accuracy was transformed into an application programming interface (API) and integrated with the Decentralized application (D-App). The user needs to upload an image of their chest X-ray, and the D-App then suggests if they should take a reverse transcription-polymerase chain reaction (RT-PCR) test for confirmation. © 2022 IEEE.

16.
Proceedings of the 17th INDIACom|2023 10th International Conference on Computing for Sustainable Global Development, INDIACom 2023 ; : 413-417, 2023.
Article in English | Scopus | ID: covidwho-20240280

ABSTRACT

Convolutional neural network (CNN) is the most widely used structure-building technique for deep learning models. In order to classify chest x-ray pictures, this study examines a number of models, including VGG-13, AlexN ct, MobileNet, and Modified-DarkCovidNet, using both segmented image datasets and regular image datasets. Four types of chest X- images: normal chest image, Covid-19, pneumonia, and tuberculosis are used for classification. The experimental results demonstrate that the VGG offers the highest accuracy for segmented pictures and Modified Dark CovidN et performs best for multi class classification on segmented images. © 2023 Bharati Vidyapeeth, New Delhi.

17.
ICRTEC 2023 - Proceedings: IEEE International Conference on Recent Trends in Electronics and Communication: Upcoming Technologies for Smart Systems ; 2023.
Article in English | Scopus | ID: covidwho-20239907

ABSTRACT

Business executives are developing cutting-edge digital solutions as the virus outbreak spreads. A face mask detection system is one of them, and it can be used to spot people wearing them. Face mask identification software and applications have already been released by a few businesses, and others have promised to do the same for the service. The proposed work examines face mask detection accuracy using CNN networks. Mask wear is now required in many developed and developing countries worldwide when leaving the house or entering public spaces. It will be difficult to maintain touchless access control in buildings while recognising faces wearing masks on any surveillance systems. Masks covering faces has made face detection algorithms and performance difficult. The proposed work detect face mask labeled no mask or mask with detection accuracy. The work train the system to click images of a face and provide labeled data. The work is classified using Convolution Neural Network (CNN), a Deep learning technique, to classify the input image with the help of the classification algorithm MobileNetV2. The trained system shows whether a person in the video frame is wearing a mask or not. © 2023 IEEE.

18.
Proceedings of the 17th INDIACom|2023 10th International Conference on Computing for Sustainable Global Development, INDIACom 2023 ; : 634-638, 2023.
Article in English | Scopus | ID: covidwho-20239852

ABSTRACT

The study proposes a novel deep learning-based model for early and accurate detection of the Tomato Flu virus, also known as tomato fever, which has recently emerged in children under the age of five in the Indian state of Kerala. The model utilizes a deep learning method to classify skin pictures and check whether a person is suffering from the virus or not, with an accuracy of 100% and a validation loss of 0.2463. Additionally, an API is developed for easy integration into various web/app frameworks. The authors highlight the importance of careful management of rare viral diseases, especially in the context of the ongoing COVID-19 pandemic. © 2023 Bharati Vidyapeeth, New Delhi.

19.
4th International Conference on Electrical, Computer and Telecommunication Engineering, ICECTE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20237209

ABSTRACT

Deep learning models are often used to process radi-ological images automatically and can accurately train networks' weights on appropriate datasets. One of the significant benefits of the network is that it is possible to use the weight of a pre-trained network for other applications by fine-tuning the current weight. The primary purpose of this work is to employ a pre-trained deep neural framework known as transfer learning to detect and diagnose COVID-19 in CT images automatically. This paper uses a popular deep neural model, ResNet152, as a neural transfer approach. The presented framework uses the weight obtained from the ImageNet dataset, fine-tuned by the dataset used in the work. The effectiveness of the suggested COVID-19 prediction system is evaluated experimentally and compared with DenseNet, another transfer learning model. The recommended ResNet152 transfer learning model exhibits improved performance and has a 99% accuracy when analogized with the DenseNet201 transfer learning model. © 2022 IEEE.

20.
2023 15th International Conference on Computer and Automation Engineering, ICCAE 2023 ; : 367-371, 2023.
Article in English | Scopus | ID: covidwho-20237180

ABSTRACT

Deep learning is increasingly gaining traction in cutting-edge medical sciences such as image classification, and genomics due to the high computational performance and accuracy in evaluating medical data. In this study, we investigate the cardiac properties of ECG Images and predict COVID-19 in a binary classification of patients who tested positive for COVID-19 and Normal Persons who tested negative. We analyzed the electrocardiogram (ECG) images by preprocessing the ECG data and building an ECG- Deep Learning- COVID-19 (ECG-DL-COVID) classifier to predict disease. The deep learning models in our experiments constituted CNN, Multi-Layer Perceptron (MLP), and Transfer Learning. Performance evaluation was done to compare the effectiveness of the proposed methodologies with other COVID-19 deep learning-related works. In the three experiments, we achieved an 87% prediction accuracy for MLP, a 90% prediction for CNN and a 93.8% prediction for Transfer Learning. Experimental results and performance evaluation show that the proposed models outperformed previous deep-learning models in the prediction of COVID-19 by a considerable margin. © 2023 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL